InterviewSolution
Saved Bookmarks
| 1. |
Factorise : (2x^(2)+5x)(2x^(2)+5x-19)+84 |
|
Answer» Solution :LET `2x^(2)+5x=a` `therefore ` GIVEN expression reduces to `a(a-19)+84=a^(2)-19a+84` Here, a=1, b=-19, c=84 `therefore ac=1xx84=84` Now, we take two factors of 84 whose sum is -19. Such factors are -7 and -12. `therefore a^(2)-19a+84=a^(2)-7a-12a+84` `=a(a-7)-12(a-7)=a(a-7)(a-12)` `=(2x^(2)+5x-7)(2x^(2)+5x-12)` Similarly, these can also be factorised further. `2x^(2)+5x-7=2x^(2)+7x-2x-7` =(2x+7)-1(2x+7) =(2x+7)(x-1) and `2x^(2)+5x-12=2x^(2)+8x-3x-12` =2x(x+4)-3(x+4)=(x+4)(2x-3) `therefore` From (1), (2) and (3), we GET `(2x^(2)+5x)(2x^(2)+5x-19)+84` `=a^(2)-19a+84 "" ("where" a=2x^(2)+5x)` =(2x+7)(x-1)(x+4)(2x-3)
|
|