

InterviewSolution
1. |
Fill in the blanks with the correct symbol out of >, = and <: (i) \(\frac{6}{-13} \)....\(\frac{6}{-13} \)(ii) \(\frac{5}{-13} \)....\(\frac{-35}{91} \)(iii) -2 ....\(\frac{-13}{5} \)(iv) \(\frac{-2}{3} \)....\(\frac{5}{-8} \)(v) 0....\(\frac{-3}{-5} \) (vi)\(\frac{-8}{9} \)....\(\frac{-9}{10} \) |
Answer» (i) Clearly, \(\frac{6}{-13}=\frac{6}{-13}\) (ii) \(\frac{5}{-13}=\frac{5\times-1}{-13\times-1}=\frac{-5}{13}\) \(\frac{-5}{13}\) and \(\frac{-35}{91}\)have different denominators. Therefore, we take LCM of 13 and 91 that is 91. Now, \(\frac{-5}{13}=\frac{-5\times7}{13\times7}=\frac{-35}{91}\)
\(\frac{-35}{91}=\frac{-35}{91}\) Hence, \(\frac{5}{-13}=\frac{-35}{91}\) (iii) We can write \(-2=\frac{-2}{1}\) \(\frac{-2}{1}\) and \(\frac{-13}{5}\) have different denominators. Now, \(\frac{-2}{1}=\frac{-2\times5}{1\times5}=\frac{-10}{5}\) \(\frac{-13}{5}=\frac{-13\times1}{5\times1}=\frac{-13}{5}\) Since, -10 > -13 Therefore, \( \frac{-10}{5}>\frac{-13}{5}\) Hence, \( -2>\frac{-13}{5}\) (iv) \(\frac{5}{-8}=\frac{5\times-1}{-8\times-1}=\frac{-5}{8}\) Therefore, we take LCM of 3 and 8 that is 24. Now, \(\frac{2}{-3}=\frac{-2\times8}{3\times8}=\frac{-16}{24}\) \(\frac{-5}{8}=\frac{-5\times3}{8\times3}=\frac{-15}{24}\) Therefore, \( \frac{-16}{24}<\frac{-15}{24}\) Hence, \( \frac{-2}{3}<\frac{-5}{8}\) (v) \(\frac{-3}{-5}=\frac{-3\times-1}{-5\times-1}=\frac{3}{5}\) \(\frac{3}{5}\)is a positive number and all positive numbers are greater than 0. Therefore, \( 0<\frac{3}{5}\) Hence, \( 0<\frac{-3}{-5}\) (vi) \(\frac{-8}{9}\) and \(\frac{-9}{10}\) have different denominators. Therefore, we take LCM of 9 and 10 that is 90. Now, \(\frac{-8}{9}=\frac{-8\times10}{9\times10}=\frac{-80}{90}\) And, \(\frac{-9}{10}=\frac{-9\times9}{10\times9}=\frac{-81}{90}\) Since, -80 > -81 Therefore, \( \frac{-80}{90}<\frac{-81}{90}\) Hence, \( \frac{-8}{9}<\frac{-9}{10}\) |
|