

InterviewSolution
Saved Bookmarks
1. |
Find all the solution of `4cos^2xsinx-2sin^2x=3sinx` |
Answer» `4cos^2xsinx - 2sin^2x = 3sinx` `=>sinx(4cos^2x - 2sinx -3) = 0` `=>sinx(4(1-sin^2x) - 2sinx -3) = 0` `=>sinx(4-4sin^2x - 2sinx -3) = 0` `=>-sinx(4sin^2x + 2sinx -1) = 0` `=>-sinx = 0 or 4sin^2x + 2sinx -1 = 0` `=>sinx = 0 or sinx = (-2+-sqrt(4-4(4)(-1)))/8` `=>sinx = 0 or sinx = (-1+-sqrt5)/4` `=>sinx = sin 0^@ or sinx = sin18^@ or sinx = sin (-54^@)` `=>x = npi or x = npi+(-1)^n(18^@) or x = npi+(-1)^n(-54^@)` So, these are the three solutions for the given equation. |
|