

InterviewSolution
Saved Bookmarks
1. |
Find `(dy)/(dx)`for the functions:`y=x^3e^xsinx` |
Answer» Correct Answer - `x^(2)e^(x)(3 sin x + x sin x + x cos x )` `y=x^(3)e^(x) sin x` `therefore" " (dy)/(dx)=(d)/(dx)(x^(3)e^(x)sin x)` `={(d)/(dx)(x^(3))}e^(x) sin x +x^(3){(d)/(dx)(e^(x))}sin +x^(3)e^(x){(d)/(dx)(sin x)}` `=3x^(2)e^(x) sin x +x^(3)e^(x) sin x +x^(3) e^(x) cos x` `=x^(2)e^(x)(3 sin x + x sin x + x cos x)` |
|