1.

Find `(dy)/(dx)`, if `y=sin^(-1)x+sin^(-1)sqrt(1-x^2),-1lt=xlt=1`.

Answer» Let `x = sintheta`, then `sin^-1x = theta`
Then, our given equation becomes,
`y = theta+sin^-1(sqrt(1-sin^2theta))`
`y = theta+sin^-1(costheta)`
`y = theta+sin^-1(sin(pi/2-theta))`
`y = theta+pi/2 -theta`
`y = pi/2`
`:. dy/dx = 0`


Discussion

No Comment Found