1.

Find `(dy)/(dx)`, when: `cot(xy)+xy=y`

Answer» Correct Answer - `(-ycot^(2)(xy))/({1+xcot^(2)(xy)})`
`cot(xy)+xy=y`
`rArr-"cosec"^(2)(xy).{x(dy)/(dx)+y}+(x(dy)/(dx)+y)=(dy)/(dx)`
`rArr{"cosec"^(2)(xy)-1)}.x(dy)/(dx)+(dy)/(dx)={1-"cosec"^(2)(xy)}y`
`rArr{xcot^(2)(xy)+1}.(dy)/(dx)=-ycot^(2)(xy).`


Discussion

No Comment Found