1.

Find `(dy)/(dx)`, when: `y=(2x+3)^(5)(3x-5)^(7)(5x-1)^(3)`

Answer» Correct Answer - `(2x+3)^(5)(3x-5)^(7)(5x-1)^(3).[(10)/((2x+3))+(21)/((3x-5))+(15)/((5x-1))]`
`logy=5log(2x+3)+7log(3x-5)+3log(5x-1)`
`rArr(1)/(y).(dy)/(dx)={(5)/((2x+3)).2+(7)/((3x-5)).3+(3)/((5x-1)).5}.`


Discussion

No Comment Found