1.

Find `(dy)/(dx)`, when: `y=sin(x^(x))`

Answer» Correct Answer - `[cos(x^(x))]x^(x)(1+logx)`
Let `x^(x)=t`. Then,
`logt=xlogx rArr(1)/(t).(dt)/(dx)=x.(1)/(x)+logx.1`
`rArr(dt)/(dx)=t[1+logx]=x^(x)(1+logx).`
`thereforey=sint rArr(dy)/(dt)=cost=cosx^(x).`
`therefore(dy)/(dx)=((dy//dt))/((dx//dt))=[cos(x^(x))]x^(x)(1+logx).`


Discussion

No Comment Found