InterviewSolution
Saved Bookmarks
| 1. |
Find `lim_(xrarr0) f(x)` where `f(x){{:((x)/(|x|),xne0),(0,x=0):}` |
|
Answer» `f(x){{:((x)/(|x|),xne0),(0,x=0):}` at x=0 LHL `underset(xrarr0^(-))"lim"f(x)` `=underset(hrarr0)"lim"f(0-h)` `=underset(hrarr0)(h)/(|-h|)` `=underset(hrarr0)"lim"(h)/(-h)=underset(hrarr0)"lim"(-1)=-1` Let `0-h=x` `rArr 0-hrarr0` `rArr hrarr0` RHL`=underset(Xrarr0^(+))"lim"f(x)` ` underset(hrarr0)"lim"f(0+h)` `=underset(hrarr0)"lim"(h)/(|h |)` ` =underset(hrarr0)"lim"(h)/(h)=underset(hrarr0)(1)=1` `because LHLneRHL` `therefore underset(xrarr0)"lim"` f(x) does not exist. Let `0+h=x` `rArr 0+hrarr0` `rArr hrarr0` |
|