InterviewSolution
Saved Bookmarks
| 1. |
Find `lim_(xrarr5) f(x)`, where `f(x)=|x|-5`. |
|
Answer» `f(x)=|x|-5` at x=5 `LHL=underset(Xrarr5^(-)"lim"f(x)` `=underset(hrarr0)"lim"f(5-h)` `=underset(hrarr0)"lim"|5-h|-5` `=5-5=0` `RHL=underset(xrarr5^(+))"lim"f(x)` `=underset(hrarr0)"lim"f(5+h)` `=underset(hrarr0)"lim"|5+h|-5` `=5-5=0` `because LHL=RHL` `therefore underset(Xrarr5)f(x)=0` Let 5-h=x `rARr 5-hrarr5` `rArr hrarr0` Let `5+h=x` `rArr 5+hrarr 5` `rArr hrarr0` |
|