1.

Find second orderderivative of `log(logx)`

Answer» Let `y=log(logx).` Then,
`(dy)/(dx)=(1)/((logx)).(1)/(x)=(1)/((xlogx))=(xlogx)^(-1)`
`rArr(d^(2)y)/(dx^(2))=(d)/(dx)(x logx)^(-1)`
`=(-1)(xlogx)^(-2).(d)/(dx)(xlogx)`
`=(-1)/((xlogx)^(2)).(x.(1)/(x)+logx.1)=(-(1+logx))/((xlogx)^(2)).`


Discussion

No Comment Found