

InterviewSolution
Saved Bookmarks
1. |
Find second orderderivative of `log(logx)` |
Answer» Let `y=log(logx).` Then, `(dy)/(dx)=(1)/((logx)).(1)/(x)=(1)/((xlogx))=(xlogx)^(-1)` `rArr(d^(2)y)/(dx^(2))=(d)/(dx)(x logx)^(-1)` `=(-1)(xlogx)^(-2).(d)/(dx)(xlogx)` `=(-1)/((xlogx)^(2)).(x.(1)/(x)+logx.1)=(-(1+logx))/((xlogx)^(2)).` |
|