InterviewSolution
Saved Bookmarks
| 1. |
Find the centre of a circle passing throughthe points (6, -6), (3,-7) and (3, 3). |
|
Answer» <P> Solution :Let C(x, y) be the centre of the circle passing through the pointsP(6, -6), Q(3, -7) and R(3, 3). Then, `""PC=QC=CR" "` (radius of circle) Now, `""PC=QC` `RARR""PC^(2)=QC^(2)` `rArr""(x-6)^(2)+(y+6)^(2)=(x-3)^(2)+(y+7)^(2)` `""[because "DISTANCE "=SQRT((x_(2)-x_(1))^(2)+(y_(2)-y_(1))^(2))]` `rArr" "x^(2)-12x+36+y^(2)+12y+36=x^(2)-6x+9+y^(2)+14y+49` `rArr" "-12x+6x+12y-14y+72-58=0" "rArr" "-6x-2y+14=0` `""3x+y-7=0""("DIVIDE by"-2 )...(1)` and `""QC=CR` `rArr""QC^(2)=CR^(2)` `rArr""(x-3)^(2)+(y+7)^(2)=(x-3)^(2)+(y-3)^(2)` `rArr""x^(2)-6x+9+y^(2)+14y+49=x^(2)-6x+9+y^(2)-6y+9` `rArr""-6x+6x+14y+6y+58-18=0` `rArr""20y+40=0""rArr""y=-(40)/(20)=-2""...(2)` Putting y=-2 in Eq. (1) , we get `""3x-2-7=0` `rArr""3x=9""rArr""x=3` Hence,centre is (3, -2). |
|