1.

Find the derivative of `sin x. "log"_(e) x` with respect to x.A.B.C.D.

Answer» Let `y=e^(x) sin x "log"_(e)x`
`rArr(dy)/(dx)=(d)/(dx)(e^(x)sin x "log"_(e)x)`
`=e^(x)sin x(d)/(dx)"log"_(e)x+e^(x)"log"_(e)x(d)/(dx)sinx`
` +"log"_(e)x.sinx(d)/(dx)e^(x)`
`=[ (e^(x)sinx)/(x)+e^(x)"log"_(e)x.cos x+"log"_(e)x.sin x.e^(x)]`


Discussion

No Comment Found