1.

Find the derivative of the following functions (it is to be understand that a,b,c,d,p,q,r and s are fixed non-zero constants and m and n are integers): `(ax+b)(cx+d)^(2)`

Answer» Let `y=(ax+b)(cx+d)^(2)`
`=(ax+b)(c^(2)x^(2)+2cdx+d^(2))`
`rArr(dy)/(dx)=(d)/(dx)(ax+b)(c^(2)x^(2)+2cdx+d^(2))`
`=(ax+b)(d)/(dx)(c^(2)x^(2)+2cdx+d^(2))`
`+(c^(2)x^(2)+2cdx+d^(2))(ax+b)`
`=(ax+b)(2c^(2)x+2cd+0)+(cx+d)^(2).(a+0)`
`=(ax+b)2c(cx+d)+a(cx+d)^(2)`
`=2c(cx+d)(aax+b)+a(Cx+d)^(2)`


Discussion

No Comment Found