1.

Find the equation of a line for which p = 4, α = 150

Answer»

Given: p = 4, α = 150° 

Concept Used: Equation of line in normal form. 

Explanation: 

So, the equation of the line in normal form is 

Formula Used: x cos α + y sin α = p 

x cos 150° + y sin 150° = 4 

cos (180° – θ) = – cos θ , sin (180° – θ) = sin θ 

⇒ x cos(180° – 30°) + y sin(180° – 30°) = 4 

⇒ – x cos 30° + y sin 30° = 4

⇒ \(\frac{\sqrt{3}x}{2}+\frac{y}{2}=4\)

⇒ √3x – y + 8 = 0 

Hence, the equation of line in normal form is √3 x – y + 8 = 0



Discussion

No Comment Found