1.

Find the equation of a line for which p = 8, α = 300°

Answer»

Given: p = 8, α = 300° 

Concept Used: 

Equation of line in normal form. 

Explanation: 

So, the equation of the line in normal form is 

Formula Used: 

x cos α + y sin α = p 

x cos 300° + y sin 300° = 8 

⇒ x cos (360° – 60°) + y sin (360° – 60°) = 8 

We know, cos (360° – θ) = cos θ, sin (360° – θ) = – sin θ 

⇒ x cos60° – y sin60° = 8 

⇒ \(\frac{x}{2}-\frac{\sqrt{3}y}{2}\)

⇒ x – √3y = 16 

Hence, the equation of line in normal form is x – √3y = 16



Discussion

No Comment Found