1.

Find the equation of a line which is perpendicular to the line√3x – y + 5 = 0 and which cuts off an intercept of 4 units with the negative direction of y-axis.

Answer»

Given: 

The equation is perpendicular to √3x – y + 5 = 0 equation and cuts off an intercept of 4 units with the negative direction of y-axis.

The line perpendicular to √3x – y + 5 = 0 is x + √3y + λ = 0  

It is given that the line x + √3y + λ = 0 cuts off an intercept of 4 units with the negative direction of the y-axis.

This means that the line passes through (0,-4).

So,

Let us substitute the values in the equation x + √3y + λ = 0, we get

0 – √3 (4) + λ = 0 
λ = 4√3

Now, substitute the value of λ back, we get

x + √3y + 4√3 = 0

∴ The required equation of line is x + √3y + 4√3 = 0.



Discussion

No Comment Found