1.

Find the equation of tangent to the parabola: y2 = 36x from the point (2, 9)

Answer»

Given equation of the parabola is y2 = 36x. 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = 36 

⇒ a = 9 

Equation of tangent to the parabola y2 = 4ax having slope m is 

y = mx + \(\frac {a}{m}\)

Since the tangent passes through the point (2, 9), 

⇒ 9 = 2m + 9/m

⇒ 9m = 2m2 + 9 

⇒ 2m2 – 9m + 9 = 0 

⇒ 2m2 – 6m – 3m + 9 = 0 

⇒ 2m(m – 3) – 3(m – 3) = 0 

⇒ (m – 3)(2m – 3) = 0 

⇒ m = 3 or m = 3/2

These are the slopes of the required tangents. 

By slope point form, y – y1 = m(x – x1), the equations of the tangents are 

⇒ y – 9 = 3(x – 2) and y – 9 = 3/2 (x – 2)

⇒ y – 9 = 3x – 6 and 2y – 18 = 3x – 6 

⇒ 3x – y + 3 = 0 and 3x – 2y + 12 = 0



Discussion

No Comment Found