1.

Find the equation of tangents which are drawn from point (4, 10) to parabola y2 = 8x.

Answer»

From point (x1, y1) two tangents can be drawn at parabola whose combined equation can be find by equation SS’ = T2

Given Point – (4, 0)

Equation of parabola,

⇒ y2 = 8x where a = 2

then S = y2 – 4ax1

⇒ S = y2 – 8x …(i)

S’ = y12 – 4ax2

⇒ S’ = (10)2 – 4 × 2 × 4

⇒ S’ = 100 – 32 = 68 …(ii)

T = yy1 – 2a(x + x1)

⇒ T = y × 10 – 2 × 2 × (x + 4)
= T = 10y – 4(x + 4)

T2 = {10y – 4(x + 4)}2

⇒ T2 = 100 y2 + 16(x + 4)2 – 80(x + 4)y

⇒ T2 = 100y2 + 16x2 + 256 + 128x – 80xy- 320y …(iii)

Put the values from eqn. (i), (ii), (iii) in SS’ – T2

(y2 – 8x) (68) = 16x2 + 100y2 – 80xy + 128x – 320y + 256

⇒ 68y2 – 744x – 16x2 – 100y2
+ 80xy – 128x+ 320y – 256 = 0

⇒ – 16x2 – 32y2 + 80xy – 672x + 320y – 256 = 0

⇒ x2 + 2y2 – 5xy + 42x – 20y + 16 = 0

This is required equation.



Discussion

No Comment Found