1.

Find the equation of the circle which passes through (2, -2) and (3, 4) and whose centre lies on the line x + y = 2.

Answer»

Let, the equation of the circle with centre (h, k) and radius ‘r’ be

(x − h)2 + (y − k)2 = r2  … (1) 

Since the circle passes through (2, −2) and (3, 4). 

(2 − h)2 + (−2 − k)2 = r2  … (2) 

And (3 − h)2 + (4 − k)2 = r2 … (3) 

(2) and (3) ⇒ (2 − h)+ (2 + k)2 = (3 − h)2 + (4 − k)2

⇒ 4 − 4h + h2 + 4 + 4k + k2 = 9 − 6h + h2 + 16 − 8k + k2 

⇒ −4h + 4k+ 8 + 6h + 8k − 25 = 0 

⇒ 2h + 12k − 17 = 0  … (4) 

Also, centre (h, k) lies on x + y = 2 

∴h + k = 2  … (5) 

(4) − 2 × (5) ⇒ 10k − 17 = −4

⇒ \(k=\frac{13}{10}\)

(5) ⇒ k = 1.3 ⇒ h= 0.7 

∴ (1) ⇒ (x − 0.7)2 + (y − 1.3)2 = r2 … (6)

(2) ⇒ (2 − 0.7)2 + (−2 − 1.3)2 = r2 

⇒ r2 = 12.58 ∴ (6) 

⇒ (x − 0.7)2+ (y − 13)2 = 12.58, is the required equation of the circle.



Discussion

No Comment Found