InterviewSolution
| 1. |
Find the equation of the circle which passes through (2, -2) and (3, 4) and whose centre lies on the line x + y = 2. |
|
Answer» Let, the equation of the circle with centre (h, k) and radius ‘r’ be (x − h)2 + (y − k)2 = r2 … (1) Since the circle passes through (2, −2) and (3, 4). (2 − h)2 + (−2 − k)2 = r2 … (2) And (3 − h)2 + (4 − k)2 = r2 … (3) (2) and (3) ⇒ (2 − h)2 + (2 + k)2 = (3 − h)2 + (4 − k)2 ⇒ 4 − 4h + h2 + 4 + 4k + k2 = 9 − 6h + h2 + 16 − 8k + k2 ⇒ −4h + 4k+ 8 + 6h + 8k − 25 = 0 ⇒ 2h + 12k − 17 = 0 … (4) Also, centre (h, k) lies on x + y = 2 ∴h + k = 2 … (5) (4) − 2 × (5) ⇒ 10k − 17 = −4 ⇒ \(k=\frac{13}{10}\) (5) ⇒ k = 1.3 ⇒ h= 0.7 ∴ (1) ⇒ (x − 0.7)2 + (y − 1.3)2 = r2 … (6) (2) ⇒ (2 − 0.7)2 + (−2 − 1.3)2 = r2 ⇒ r2 = 12.58 ∴ (6) ⇒ (x − 0.7)2+ (y − 13)2 = 12.58, is the required equation of the circle. |
|