InterviewSolution
| 1. |
Find the equation of the line which is equidistant from the parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0. |
|
Answer» The given parallel lines are 9x + 6y – 7 = 0 …(1) 3x + 2y + 6 = 0. ⇒ 9x + 6y + 18 = 0 …(2) Let the line which is equidistant from (1) and (2) be 9x + 6y + \(\lambda\)= 0 …(3) Distance between (1) and (2) = \(^\frac{|7 - \lambda|}{\sqrt{9^2+6^2}}\) = \(^\frac{|7+ \lambda|}{\sqrt{117}}\) and distance between (2) and (3) = \(^\frac{|18 - \lambda|}{\sqrt{9^2+6^2}}\)=\(^\frac{|18 - \lambda|}{\sqrt{117}}\) Given, \(^\frac{|7+ \lambda|}{\sqrt{117}}\)=\(^\frac{|18 - \lambda|}{\sqrt{117}}\) ⇒ 7 + \(\lambda\) = 18 – \(\lambda\) ⇒ \(\lambda\) = \(\frac{11}{2}\) The equation of the required line is 9x + 6y +\(\frac{11}{2}\) = 0 ⇒ 18x + 12y + 11 = 0 |
|