1.

Find the equation of the perpendicular bisector of the line segment joining the points A(2, 3) and B(6, – 5).

Answer»

The mid-point of A(2, 3) and B(6, – 5), 

= \((\frac{2+6}{2},\frac{3-5}{2})=(4, -1)\) 

And slope of AB, m =\(\frac{-5-3}{6-2}=-2\)

∴ Slope of the Perpendicular bisector of 

   AB, m’ = \(\frac{-1}{m}=\frac{1}{2}\)

Since the bisector passes through (4, – 1), so the equation of the Perpendicular bisector is 

Y – (– 1) = \(\frac{1}{2}\)( – 4) 

⇒ y + 1 = \(\frac{1}{2}\)(x − 4) 

⇒ x – 4 = 2y + 2 

⇒ x – 2y – 6 = 0, is the required equation.



Discussion

No Comment Found