1.

Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).

Answer»

Given: A (a, b) and B (a1, b1) be the given points 

To find: 

Equation of the right bisector of the line segment joining the points (a, b) and (a1, b1). 

Explanation: 

Let C be the midpoint of AB.

∴ coordinates of C = \(\Big(\frac{a+a_2}{2},\frac{b+b_1}{2}\Big)\) 

And, slope of AB = \(\frac{b_1-b}{a_1-a}\) 

So, the slope of the right bisector of AB is \(-\frac{a_1-a}{b_1-b}\) 

Thus, the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1) is

\(y - \frac{b+b_1}{2}\) = \(-\frac{a_1-a}{b_1-b}\Big(x-\frac{a+a_1}{2}\Big)\) 

⇒ 2 (a1 - a)x + 2y(b- b) + (a2 + b2) – (a12 + b12) = 0 

Hence, equation of the required line 2 (a1 – a)x + 2y(b1- b) + (a2 + b2) – (a12 + b12) = 0



Discussion

No Comment Found