1.

Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x – 5y = 15 lying between the axes.

Answer»

Concept Used:

The equation of a line in intercept form is  \(\frac{x}{a}+\frac{y}{b}=1\) 

Given: 

The line passes through (2, 1) 

 \(\frac{2}{a}+\frac{1}{b}=1\)  ……(i) 

Assuming: 

The line 3x – 5y = 15 intercept the x-axis and the y-axis at A and B, respectively. 

Explanation: 

At x = 0 we have, 

0– 5y = 15 

⇒ 5y = -15 

⇒ y = -3

At y = 0 we have, 

3x – 0 =15 

⇒ x = 5 

A= (0, -3) and B = (5, 0) 

The midpoint of AB is (\(\frac{5}{2},-\frac{3}{2}\)) lies on the line \(\frac{x}{a}+\frac{y}{b}=1\) 

 \(\frac{5}{2a}-\frac{3}{2b}=1\)  ……(ii) 

Using\(\frac{3}{2}\times\) eq(i) + eq(ii) we get,

 \(\frac{3}{a}+\frac{5}{2a}=\frac{3}{2}+1\)  

⇒ a =  \(\frac{11}{5}\)

For a =  \(\frac{11}{5}\) we have, 

   \(\frac{10}{11}+\frac{1}{b}=1\)

⇒ b = 11 

Therefore, the equation of the required line is: 

  \(\frac{x}{\frac{11}{5}}+\frac{y}{11}=1\)

  \(\frac{5x}{11}+\frac{y}{11}=1\)

⇒ 5x + y = 11 

Hence, the equation of line is 5x + y = 11



Discussion

No Comment Found