1.

Find the equation of the straight line upon which the length of the perpendicular from the origin is 2, and the slope of this perpendicular is \(\frac{5}{12}\)

Answer»

Assuming:

The perpendicular drawn from the origin make acute angle α with the positive x–axis. Then, we have, tanα =  \(\frac{5}{12}\) 

We know that, tan(180 + α) = tanα 

So, there are two possible lines, AB and CD, on which the perpendicular drawn from the origin has a slope equal to 5/12 . 

Given: 

Now tan α =  \(\frac{5}{12}\)

⇒ sin α = \(\frac{5}{13}\) and  cos α = \(\frac{12}{13}\)

Explanation: 

So, the equations of the lines in normal form are 

Formula Used: x cos α + y sin α = p 

⇒ x cos α + y sin α = p and x cos(180° + α) + ysin(180° + α) = p 

⇒ x cos α + y sin α = 2 and –x cos α – ysin α = 2 cos (180° + θ) = – cos θ , sin (180° + θ) = – sin θ

⇒ \(\frac{12x}{13}+\frac{5y}{13}\)

and 12x + 5y = – 26 

Hence, the equation of line in normal form is   \(\frac{12x}{13}+\frac{5y}{13}\) = 26 and 12x + 5y = – 26



Discussion

No Comment Found