

InterviewSolution
Saved Bookmarks
1. |
Find the general solution of the equation `5cos^(2)theta+7sin^(2)theta-6=0`. |
Answer» Given equation, `5cos^(2)theta+7sin^(2)theta-6=0` `rArr" "5cos^(2)theta+7(1-cos^(2)theta)-6=0` `rArr" "5cos^(2)theta+7-7cos^(2)theta-6=0` `rArr" "5cos ^(2)theta+7-7cos^(2)theta-6=0" "rArr" "-2cos^(2)theta+1=0` `rArr" "2cos^(2)theta -1=0" "[because cos^(2)theta=cos^(2)alpha thereforetheta=npipmalpha]` `rArr" "cos^(2)theta=(1)/(2)` `rArr" "cos^(2)theta=cos^(2)""(pi)/(4)` `therefore" "theta=npipm(pi)/(4)` |
|