InterviewSolution
| 1. |
Find the general solutions of the following equations : sin x = tan x |
|
Answer» Ideas required to solve the problem: The general solution of any trigonometric equation is given as – • sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z. • cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. • tan x = tan y, implies x = nπ + y, where n ∈ Z. Given, sin x = tan x ⇒ sin x = \(\frac{sin\,x}{cos\,x}\) ⇒ sin x cos x = sin x ⇒ sin x (cos x - 1) = 0 either, sin x = 0 or cos x = 1 ⇒ sin x = sin 0 or cos x = cos 0 We know that, If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z ∵ sin x = sin 0 ∴ y = 0 And hence, x = nπ where n ∈ Z Also, If cos x = cos y, implies x = 2mπ ±y, where m∈ Z ∵ cos x = cos 0 ∴ y = 0 Hence, x is given by x = 2mπ where m ϵ Z ∴ x = nπ or 2mπ ,where m,n ϵ Z …ans |
|