1.

Find the general solutions of the following equations : sin x = tan x

Answer»

Ideas required to solve the problem: 

The general solution of any trigonometric equation is given as – 

• sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z. 

• cos x = cos y, implies x = 2nπ ± y, where n ∈ Z. 

• tan x = tan y, implies x = nπ + y, where n ∈ Z. 

Given,

sin x = tan x

⇒ sin x = \(\frac{sin\,x}{cos\,x}\)

⇒ sin x cos x = sin x

⇒ sin x (cos x - 1) = 0

either, 

sin x = 0 or cos x = 1 

⇒ sin x = sin 0 or cos x = cos 0 

We know that, 

If sin x = sin y, implies x = nπ + (– 1)n y, where n ∈ Z 

∵ sin x = sin 0 

∴ y = 0 

And hence,

x = nπ where n ∈ Z

Also, 

If cos x = cos y, implies x = 2mπ ±y, where m∈ Z 

∵ cos x = cos 0 

∴ y = 0 

Hence, x is given by

x = 2mπ where m ϵ Z 

∴ x = nπ or 2mπ ,where m,n ϵ Z …ans



Discussion

No Comment Found