InterviewSolution
Saved Bookmarks
| 1. |
Find the maximum value of `4sin^2x+3cos^2x+sin(x/2)+cos(x/2)dot` |
|
Answer» `I=4sin^2x+3(1-sin^2x)+sin(x/2)+cos(x/2)` `I=4sin^2x+3-3sin^2x+sin(x/2)+cos(x/2)` `I=sin^2x+3+sin(x/2)+cos(x/2)` `I=sin^2x+3+sqrt2[1/sqrt2sin(x/2)+cos(x/2)*1/sqrt2]` `=3+sin^2x+sqrt2sin[pi/4+x/2]` `sin(pi/4+x/2)=1` When `x=pi/2` i.e.`sin(pi/4+pi/4)=sin(pi/2)=1` Max`I=x=pi/2` `I(atx=pi/2)=3+sin^2(pi/2)+sqrt2` `=3+1+sqrt2` `=4+sqrt2`. |
|