InterviewSolution
Saved Bookmarks
| 1. |
Find the range of `12sintheta-9sin^2theta` |
|
Answer» Correct Answer - [-21, 4] `f(x)=12sintheta-9sin^2theta` `=-(9sin^2theta-12sintheta)` `=-(9sin^2theta-12sintheta+4-4)` `=-((3sintheta-2)^2-4)=4-(3sintheta-2)^2` Minimum value of `f(theta)` occurs when `(3sintheta-2)^2` is minimum, which is 0. Hence, range of `f(theta)` is `[4-25,4]-=[-21,4]`. |
|