InterviewSolution
Saved Bookmarks
| 1. |
Find the range of the function `5sinx -12cosx +7` |
|
Answer» `f(x)=5sinx-12cosx+7` `sqrt(a^2+b^2)/sqrt(a^2+b^2)(asinx++bcosx)` `sqrt(a^2+b^2)(a/sqrt(a^2+b^2)sinx+b/sqrt(a^2+b^2)cosx)` `sinalpha=a/sqrt(a^2+b^2)` `cosalpha=b/sqrt(a^2+b^2)` `sqrt(5^2+12^2)=sqrt(25+144)=sqrt169=13` `13/13(5sinx-12cosx)+7` `13(5/13sinx-12/13cosx)+7` `cosalpha=5/13` `sinalpha=12/13` `13(cosalphasinx-sinalphacosx)+7` `13(sin(x-alpha))+7` `-1<=sin(x-alpha)<=1` `-13<=13sin(x-alpha)<=13` `-13+7<=13sin(x-alpha)+7<=13+7` `-6<=f(x)<=20` `f(x) in [-6,20]`. |
|