InterviewSolution
Saved Bookmarks
| 1. |
Find the value of `cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(tan73^(@)sec^(2)68^(@)))` |
|
Answer» `cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(tan73^(@)sec^(2)68^(@)))` `=cot17^(@)(cot73^(@)cos^(2)22^(@)+cot73^(@)cos^(2)68^(@))` `=cot(90^(@)-73^(@)){cot73^(@)cos^(2)22^(@)+cot73^(@)cos^(2)(90^(@)-22^(@))}` `=tan73^(@).cot73^(@)(cos^(2)22^(@)+sin^(2)22^(@))` `=tan73^(@).(1)/(tan73^(@))xx1=1xx1=1`. Hence the required value =1. |
|