InterviewSolution
Saved Bookmarks
| 1. |
Find the value of tan^-1(\(\frac{1}{3}\))+tan^-1(\(\frac{1}{5}\))+tan^-1(\frac{1}{7})[/latex](a) tan^-1\((\frac{4}{7})\)(b) tan^-1\((\frac{9}{7})\)(c) tan^-1\((\frac{7}{9})\)(d) tan^-11The question was asked during an internship interview.I would like to ask this question from Properties of Inverse Trigonometric Functions in portion Inverse Trigonometric Functions of Mathematics – Class 12 |
|
Answer» RIGHT option is (c) tan^-1\((\frac{7}{9})\) The best I can explain: Using the formula tan^-1x+tan^-1y=tan^-1\(\frac{x+y}{1-xy}\), we get tan^-1(\(\frac{1}{3}\))+tan^-1(\(\frac{1}{5}\))=tan^-1\(\bigg(\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{3}×\frac{1}{5}}\bigg)\) = \(tan^{-1}\bigg(\frac{\frac{8}{15}}{\frac{14}{15}}\bigg)=tan^{-1}(\frac{8}{15}×\frac{15}{14})=tan^{-1}(\frac{4}{7})\) =\(tan^{-1}(\frac{1}{3})+tan^{-1}(\frac{1}{5})+tan^{-1}(\frac{1}{7})=tan^{-1}(\frac{4}{7})+tan^{-1}(\frac{1}{7})\) =\(tan^{-1}\bigg(\frac{\frac{4}{7} + \frac{1}{7}}{1-\frac{4}{7}×\frac{1}{7}}\bigg) = tan^{-1}\bigg(\frac{\frac{5}{7}}{\frac{45}{49}}\bigg)=tan^{-1}(\frac{5}{7}×\frac{49}{45})\) =tan^-1\((\frac{7}{9})\). |
|