InterviewSolution
Saved Bookmarks
| 1. |
Find the values of x where function `f(X)m = (sin x + cosx)(e^(x))` in `(0,2pi)` has point of inflection |
|
Answer» Correct Answer - `x=pi//4,5pi//4` We have f(x) =`(sinx+cosx)^(e^(x)` `therefore f(x) =(sinx+cosx)e^(x)+e^(x)(cosx-sinx)` `rarr f(x) =2e^(x)cosx` `f'(x) =2(e^(x) cosx-=e^(x)sinx)` `=2e^(x)(cosx-sinx)` If f'(x) =0 then cos x - sinx =0 `therefore tanx=1 rarr x =(pi)/(4),(5pi)/(4)` |
|