1.

Find the values of x where function `f(X)m = (sin x + cosx)(e^(x))` in `(0,2pi)` has point of inflection

Answer» Correct Answer - `x=pi//4,5pi//4`
We have f(x) =`(sinx+cosx)^(e^(x)`
`therefore f(x) =(sinx+cosx)e^(x)+e^(x)(cosx-sinx)`
`rarr f(x) =2e^(x)cosx`
`f'(x) =2(e^(x) cosx-=e^(x)sinx)`
`=2e^(x)(cosx-sinx)`
If f'(x) =0 then cos x - sinx =0
`therefore tanx=1 rarr x =(pi)/(4),(5pi)/(4)`


Discussion

No Comment Found