

InterviewSolution
Saved Bookmarks
1. |
For `0ltphiltpi//2," if" x=sum_(n=0)^(oo) cos^(2n)phi,y=sum_(n=0)^(oo) sin^(2m)phi,z=sum_(n=0)^(oo)cos^(2n)phisin^(2n)phi`,thenA. `xyz=xz+y`B. `xyz=xy+z`C. `xyz=x+y+z`D. `xyz=yz+x` |
Answer» Correct Answer - B::C All are infinte geometric progression with common ratio lt 1 `x=1/(1-cos^2phi)=1/sin^2phi,y=1/(1-sin^2phi)=1/cos^2phi`, `z=1/(1-cos^2phisin^2phi)` Now, `xy+z=1/(sin^2phicos^2phi)+1/(1-sin^2phicos^2phi)` `=1/(sin^2phicos^2phi(1-sin^2phicos^2phi))` `or xy+z=xyz ...(i)` Clearly, `x+y=(sin^2phi+cos^2phi)/(sin^2phicos^2phi)=xy` `:. x+y+z=xyz` [using Eq. (i)] |
|