

InterviewSolution
1. |
For an alpha particle, accelerated through a potential difference V, wavelength (in Å) of the associated matter wave is1. \(\frac{12.27}{\sqrt{V}}\)2. \(\frac{0.101}{\sqrt{V}}\)3. \(\frac{0.202}{\sqrt{V}}\)4. \(\frac{0.286}{\sqrt{V}}\) |
Answer» Correct Answer - Option 2 : \(\frac{0.101}{\sqrt{V}}\) CONCEPT :
\(⇒ λ = \frac{h}{P} = \frac{h}{mV}\)----(1) Where m = mass of the particle and V = Velocity, h = Plancks constant Substituting the value\(P = \sqrt{2mE}\)in equation 1, it can be rewritten as \(⇒ λ = \frac{h}{\sqrt{2mE}}\) Where m = mass, E= kinetic energy, EXPLANATION :
\(⇒ \lambda =\frac{h}{P}\) or\(λ=\frac{h}{\sqrt{2mE}}\)--------(1)
⇒ E = q × V Where q = Charge, V = potential difference For an alpha particle q = 2e ⇒E = 2e × V and M = 4mP Substituting the given values in equation 1 \(⇒ λ=\frac{h}{\sqrt{4m_P × 2e× V}}\) Substituting the given values mp= 1.67 × 10-27Kg, e = 1.6 × 10-19C, h = 6.626 × 10-34Joues/sec and solving we get \(⇒ λ=\frac{0.101}{\sqrt{V}}\)
|
|