InterviewSolution
Saved Bookmarks
| 1. |
For any triangle ABC, prove that`(a-b)/c=(sin((A-B)/2))/(cosC/2)` |
|
Answer» From sine law, we have,`a/sinA = b/sinB = c/sinC = k` So, `a = ksinA, b = ksinB, c = ksinC` `:. L.H.S. = (a-b)/c = (k(sinA - sinB))/(ksinC)` `= (sinA- sinB)/(sinC)` `=(2sin((A-B)/2)cos((A+B)/2))/(2sin(C/2)cos(C/2))` Here, `A+B+C = 180. So, A+B = 180- C` So, our expression becomes, `= (sin((A-B)/2)cos((180-C)/2))/(sin(C/2)cos(C/2))` `= (sin((A-B)/2)cos(90-C/2))/(sin(C/2)cos(C/2))` `= (sin((A-B)/2)sin(C/2))/(sin(C/2)cos(C/2))` `= sin((A-B)/2)/cos(C/2) = R.H.S.` |
|