

InterviewSolution
1. |
For what value of x matrix A is singular?A = \(\begin{bmatrix}x-1 & 1 & 1 \\[0.3em]1 & x-1 & 1 \\[0.3em]1 &1 & x-1\end{bmatrix}\) |
Answer» |A| = \(\begin{vmatrix}x-1 & 1 & 1 \\[0.3em]1 & x-1 & 1 \\[0.3em]1 &1 & x-1\end{vmatrix}\) Expanding along the first row, |A| = (x - 1)\(\begin{vmatrix}x-1 & 1 \\[0.3em]1 & x-1 \\[0.3em]\end{vmatrix}\) - 1\(\begin{vmatrix}1 & 1 \\[0.3em]1 & x-1 \\[0.3em]\end{vmatrix}\) + \(\begin{vmatrix}1 & x-1 \\[0.3em]1 & 1 \\[0.3em]\end{vmatrix}\) = (x–1) ((x–1) (x–1)– 1×1) – 1((x–1) – 1×1) + 1(1×1 – 1×(x–1)) = (x–1) (x2 – 2x + 1 – 1) – 1(x–1 – 1) + 1(1 – x+1) = x(x–1) (x– 2) – 1(x–2) – (x–2) = (x– 2) {x(x–1) – 1 – 1} = (x– 2) (x2 – x – 2) For singular |A| = 0, (x– 2) (x2 – x – 2) = 0 (x– 2) (x2 – 2x + x – 2) = 0 (x–2)(x–2)(x+1) = 0 ∴ x = –1 or 2 Also, |A| = 28 ⇒ 7x2 + 3x – 6 = 28 ⇒ 7x2 + 3x – 34 = 0 ⇒ 7x2 + 17x – 14x – 34 = 0 ⇒ x(7x+ 17) – 2(7x +17) = 0 ⇒ (x–2)(7x +17) = 0 |
|