1.

Prove that `|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=(abc)(1/a+1/b+1/c+1)=(bc+ca+ab+abc)`

Answer» The given determinant
`=|{:(1+a, " "1, " "1),(" "1, 1+b, " "1),(" "1, " "1, 1+c):}|`
`=(abc)*|{:((1)/(a)+1, (1)/(a), (1)/(a)),((1)/(b), (1)/(b)+1, (1)/(b)),((1)/(c), (1)/(c), (1)/(c)+1):}|`
`["taking a, b, c common from"R_(1), R_(2) " and " R_(3) "respectively"]`
`=(abc)((1)/(a) + (1)/(b)+(1)/(c)+1)*|{:(1, 1, 1),((1)/(b), (1)/(b)+1, (1)/(b)),((1)/(c), (1)/(c), (1)/(c)+1):}|`
`["applying "R_(1) to R_(1) + R_(2) + R_(3) " and taking out" ((1)/(a) + (1)/(b) + (1)/(c) +1) "common from"R_(1)]`
`=(abc)((1)/(a) + (1)/(b)+(1)/(c)+1)*|{:(0, 0, 1),(0, 1, (1)/(b)),(-1, -1, (1)/(c)+1):}|["applying"C_(1) to (C_(1) -C_(3))"and"C_(2) to (C_(2) -C_(3))]`
`=(abc)((1)/(a) + (1)/(b)+(1)/(c)+1)*(1)*|{:(0, 1),(-1, -1):}|["expanding by 1st row"]`
`=(abc)((1)/(a) + (1)/(b)+(1)/(c)+1)*1`
`=(abc)((1)/(a) + (1)/(b)+(1)/(c)+1) = (bc+ca+ab+abc)`
Hence, the result follows.


Discussion

No Comment Found