1.

For `x>0`, let `f(x)=int_1^x log_et/(1+t)dt` find the function `f(x)+f(1/x)` and show that `f(e)+f(1/e)=1/2`

Answer» `f(x)=int_1^x (log_e^t)/(t+1)dt-(1)`
`f(1/x)=int_1^x(log_e^t)/(t+1)dt`
`Let t=1/h,dt=-1/h^2dt`
`if t=1,h=1 or t=1/x,4=x`
`f(1/x)=int_1^x(log_e(1/h))/(1+1/h)(-1/h^2dx)`
`f(1/x)=int_1^x(-logh(-1))/(h+1)h dh`
`f(1/x)=int_1^x9(log_e^t)/(t(t+1))dt-(2)`
Adding 1 and 2
`f(x)+f(1/x)=int_1^x(log_e^t)/(t+1)(1+1/t)dt`
`int_1^x(log_e^t)/(t+1)(1+1/t)dt`
`int_1^x(log_e^t)/t dt`
`logt=v`
`1/tdt=dv`
`f(x)+f(1/x)=int_0^(logx)vdv`
`=[v^2/2]_0^logx`
`=(log_e^x)^2/2`
`f(e)+f(1/e)=(log_e^e)^2/2=1/2`


Discussion

No Comment Found