InterviewSolution
| 1. |
\(\frac{{56}}{{135}} \div \left\{ {\left( {\frac{7}{3} + \frac{1}{5}} \right) \div \left( {9 + 3\frac{3}{4}} \right) \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\)1). \(\frac{3}{7}\)2). \(\frac{7}{3}\)3). \(\frac{2}{9}\)4). \(\frac{9}{2}\) |
|
Answer» FOLLOW BODMAS rule to solve this question, as per the given order below. Step 1: Parts of the equation enclosed in ‘Brackets’ must be solved first. Step 2: An mathematical ‘Of’ or ‘Exponent’ must be solved next. Step 3: Next, the parts of the equation containing ‘Division’ or ‘Multiplication’ are calculated. Step 4: Last but not the least, the parts of the equation containing ‘Addition’ or ‘Subtraction’ are calculated. Given, $(\BEGIN{array}{l} \frac{{56}}{{135}} \div \left\{ {\left( {\frac{7}{3} + \frac{1}{5}} \right) \div \left( {9 + 3\frac{3}{4}} \right) \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \div \left\{ {\left( {\frac{7}{3} + \frac{1}{5}} \right) \div \left( {9 + \frac{{15}}{4}} \right) \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \div \left\{ {\frac{{38}}{{15}} \div \frac{{51}}{4} \times \frac{{17}}{{19}}} \right\} = \frac{1}{?} \end{array})$ $(\begin{array}{l} \Rightarrow \frac{{56}}{{135}} \div \left\{ {\frac{{38}}{{15}} \times \frac{4}{{51}} \times \frac{{17}}{{19}}} \right\} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \div \frac{8}{{45}} = \frac{1}{?}\\ \Rightarrow \frac{{56}}{{135}} \times \frac{{45}}{8} = \frac{1}{?}\\ \Rightarrow \frac{7}{3} = \frac{1}{?} \end{array})$ ⇒ ? = 3/7 |
|