 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `15 sin^(4)alpha+10cos^(4)alpha=6`, then the value of `8 cosec^(6)alpha+27 sec^(6)alpha` isA. 150B. 175C. 225D. 250 | 
| Answer» Correct Answer - D `15 sin^(4)alpha+10 cos^(4)alpha=6` Dividing by `cos^(4)alpha`, we get `15 tan^(4)alpha+10=6 sec^(4)alpha` `rArr 15 tan^(4)alpha+10=6(1+tan^(2)alpha)^(2)` `rArr 9tan^(4)alpha-12tan^(2)alpha+4=0` `rArr (3 tan^(2)alpha-2)^(2)=0` `rArr tan^(2)alpha=(2)/(3)` Now `8 cosec^(6)alpha+27sec^(6)alpha` `8(1+cot^(2)alpha)^(3)+27(1+tan^(2)alpha)^(3)` `=8(1+(3)/(2))^(3)+27(1+(2)/(3))^(3)` `=125+125=250` | |