

InterviewSolution
Saved Bookmarks
1. |
If `3sinbeta=sin(2alpha+beta)`then `tan(alpha+beta)-2tanalpha`is(a)independent of `alpha`(b)independent of `beta`(c)dependent of both `alpha` and `beta`(d)independent of both `alpha` and `beta` |
Answer» `tan(alpha+beta) - 2tanalpha` `= sin(alpha+beta)/cos(alpha+beta) - sinalpha/cosalpha - tanalpha` `=(sin(alpha+beta)cosalpha - sinalphacos(alpha+beta))/(cosalphacos(alpha+beta)) - tanalpha` `=(sin(alpha+beta-alpha))/(cosalphacos(alpha+beta)) - sinalpha/cosalpha` `=(sinbeta)/(cosalphacos(alpha+beta)) - sinalpha/cosalpha` `=(sinbeta - sinalphacos(alpha+beta))/(cosalphacos(alpha+beta)) ` `=(2(sinbeta - sinalphacos(alpha+beta)))/(2cosalphacos(alpha+beta)) ` `=(2sinbeta - 2sinalphacos(alpha+beta))/(2cosalphacos(alpha+beta)) ` `=(2sinbeta - (sin(alpha+alpha+beta) + sin(alpha-alpha-beta)))/(2cosalphacos(alpha+beta))` `=(2sinbeta - (sin(2alpha+beta) - sinbeta))/(2cosalphacos(alpha+beta))` `=(3sinbeta - sin(2alpha+beta))/(2cosalphacos(alpha+beta))` It is given that, `3sinbeta = sin(2alpha+beta) => 3sinbeta - sin(2alpha+beta) = 0` So, it becomes, `=0/(2cosalphacos(alpha+beta))` `=0` `:. tan(alpha+beta) - 2tanalpha =0` So, given expression is independent of both `alpha` and `beta`. |
|