1.

If `5^x+(2sqrt(3))^(2x)geq1 3^x` then the solution set forA. `[2,oo)`B. {2}C. `(-oo,2]`D. [0,2]

Answer» Correct Answer - C
We have,
`5^(x)+(2sqrt(3))^(2x)ge13^(x)`
`implies ((5)/13)^(x)+((12)/(13))^(x)ge1`
`implies a^(x) +b^2ge 1`,where `s(5)/(12)` and `b=(12)/(13) `
` implies a^(x) =b^(x) ge 1 `, where `a^(2) +b^(2) =1`
Let `f(x) =a^(x) +b^( x)`
we observe that `f(2) = a^(2) + b^(2) =1`
Also, `f(x) gt 1` for `x lt 2` and `f(x) lt 1 ` for `x gt 2`
Thus, `f(x) ge 1`for `x le 2`.
Hence, the solution set of the given inequation is `(-oo,2]`.


Discussion

No Comment Found

Related InterviewSolutions