

InterviewSolution
Saved Bookmarks
1. |
If `A=((2,-3,5),(3,2,-4),(1,1,-2))` find `A^(-1)`. Use it to solve the system of equations `2x-3y+5z=11` , `3x+2y-4z=-5` and `x+y-2z=-3` |
Answer» ` A=[{:(2,-3,5),(3,2,-4),(1,1,-2):}]` `rArr" " |A|=[{:(2,-3,5),(3,2,-4),(1,1,-2):}]` =2(-4+4)-(-23)(-6+4)+5(3-2) `=-6+5=-1ne0` `therefore` A is invertible `"Now," A_(11)=0, A_(12)=2, A_(13)=1` `A_(21)=-1, A_(22)=-9, A_(23)=-5` `A_(31)=2, A_(32)=23, A_(33)=13` `therefore" adjA"=[{:(0,2,1),(-1,-9,-5),(2,23,13):}]=[{:(0,-1,2),(2,-9,23),(1,-5,13):}]` `"and A"^(-1)=1/|A|"adj A"=1/-1"=[{:(0,-1,2),(2,-9,23),(1,-5,13):}]=[{:(0,1,-2),(2,-9,23),(-1,5,-13):}]` Given system of equations, 2x-3y+5y=11 3x+2y-4z=-5 x+y-2z=-3 `"=[{:(2,-3,5),(3,2,-4),(1,1,12):}][{:(x),(y),(z):}]=[{:(11),(-5),(-3):}]` `rArr" "AX=B=rArrX=A^(-1)B` `[{:(x),(y),(z):}]=[{:(0,1,-2),(-2,9,-23),(-1,5,-13):}][{:(11),(-5),(-3):}]` `=[{:(0-5+6),(-22-45+69),(-11-25+39):}][{:(1),(2),(3):}]` `rArr " "x=1, y=2, z=3` |
|