InterviewSolution
Saved Bookmarks
| 1. |
If A(4,1) and B(5,4), find the equation of the locus of point P such that PA2 = 3PB2. |
|
Answer» Let P(x, y) be any point on the required locus. Given, A(4,1), B(5,4) and PA2 = 3PB2 ∴ (x – 4)2 + (y – 1)2 = 3[(x – 5)2 + (y – 4)2 ] ∴ x2 – 8x + 16 + y2 – 2y + 1 = 3(x2 – 10x + 25 + y2 – 8y + 16) ∴ x2 – 8x + y2 – 2y + 17 = 3x2 -30x + 75 + 3y2 – 24y + 48 ∴ 2x2 + 2y2 – 22x – 22y + 106 = 0 ∴ x2 + y2 – 11x – 11y + 53 = 0 ∴ The required equation of locus is x2 + y2 – 11x – 11y + 53 = 0 |
|