1.

If a and b are positive quantities, `(a gt b)` find minimum positive value of `(a sectheta- b tantheta)`A. 2abB. `sqrt(a^2-b^2)`C. a-bD. `sqrt(a^2+b^2)`

Answer» Correct Answer - B
Let `s=asectheta-btantheta`
`or btantheta+s=asectheta`
`or (a^2-b^2)tan^2theta-2bstantheta+(a^2-s^2)=0`
For `tantheta" to be real " 4b^2s^2-4(a^2-b^2)(a^2-s^2)ge0`
`or a^2s^2gea^2(a^2-b^2)`
`or sgesqrt(a^2-b^2)`
Therefore, the minimum value of s is `sqrt(A^2-B^2)`.


Discussion

No Comment Found