InterviewSolution
Saved Bookmarks
| 1. |
If α and β are the roots of the equation 3x2 – 11x + 6, then find the value of (α – β)2.1. 49/92. 36/73. 64/74. 81/7 |
|
Answer» Correct Answer - Option 1 : 49/9 Given: α and β are the roots of the equation 3x2 – 11x + 6 Formula Used: If ax2 + bx + c = 0, then Sum of the roots = -(b/a) Product of the roots = (c/a) (a – b)2 = (a + b)2 – 4 × a × b Calculation: For equation, 3x2 – 11x + 6 a = 3, b = -11, and c = 6 The sum of the roots = -(b/a) ⇒ α + β = -(-11/3) ⇒ α + β = 11/3 The product of the roots = (c/a) ⇒ α × β = 6/3 ⇒ α × β = 2 Now, (α - β)2 = (α + β)2 – 4 × α × β ⇒ (11/3)2 – 4 × 2 ⇒ (121/9) – 8 ⇒ (121 – 72)/9 ⇒ 49/9 ∴ The value of (α - β)2 is 49/9. |
|