InterviewSolution
Saved Bookmarks
| 1. |
If x2 - 5x + 1 = 0, then the value of \(\left(x^4 + \frac 1 {x^2}\right) \div \left(x^2 + 1\right)\) is:1. 252. 213. 224. 24 |
|
Answer» Correct Answer - Option 3 : 22 Given: x2 - 5x + 1 = 0 Formula used: (a + b)3 = a3 + b3 + 3ab(a + b) Calculations: x2 - 5x + 1 = 0 ⇒ x(x - 5 + 1/x) = 0 ⇒ (x - 5 + 1/x) = 0 ⇒ (x + 1/x) = 5 Taking cube both sides, ⇒ (x + 1/x)3 = (5)3 ⇒ x3 + 1/x3 + 3(x)(1/x)(x + 1/x) = 125 ⇒ x3 + 1/x3 + 3(5) = 125 ⇒ x3 + 1/x3 + 15 = 125 ⇒ x3 + 1/x3 = 125 - 15 ⇒ x3 + 1/x3 = 110 (x4 + 1/x2)/(x2 + 1) Dividing the numerator and denominator by x, (1/x)(x4 + 1/x2)/(x2 + 1)(1/x) ⇒ (x3 + 1/x3)/(x + 1/x) ⇒ 110/5 ⇒ 22 ∴ The value of \(\left(x^4 + \frac 1 {x^2}\right) \div \left(x^2 + 1\right)\) is 22. |
|