1.

If α ,β are roots of the equation x2 – 2x +  3 = 0 Then the equation whose roots are  α3–3 α2 + 5α – 2 and  β3 – β2 + β + 5 is(a)  x2 + 3x + 2 = 0(b)  x2– 3x – 2 = 0(c)  x2 – 3x + 2 = 0(d)  None

Answer»

Correct option (c) x– 3x + 2 = 0

Explanation:

α– 2α + 3 = 0 and β– 2β + 3 = 0 

α– 2α2 + 3α  and β– 2β2 + 3β 

P = α– 3α2 + 5α - 2 = 2α– 3α - 3α2 + 5α - 2

= α– 2α - 2

= 3 - 2 = 1

Similarly, we can show that Q = β– β2 + β + 5 = 2

Sum = 1 + 2 = 3 and product = 1 × 2 = 2

Hence x– 3x + 2 = 0



Discussion

No Comment Found

Related InterviewSolutions