1.

If a + b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.

Answer»

a + b + c = 9, ab + bc + ca = 26 

Squaring, a + b + c = 9 both sides, we get 

(a + b + c)2 = (9)2 

a2 + b2 + c2 + 2(ab + bc + ca) = 81

a2 + b2 + c2 + 2 x 26 = 81 

a2 + b2 + c2 + 52 = 81 

a2 + b2 + c2 = 29 

Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)] 

= 9[29 – 26] 

= 9 x 3 

= 27 

⇒ a3 + b3 + c3 – 3abc = 27



Discussion

No Comment Found